Kopplung an das elektromagnetische Feld

Elektrische Ladungen \(q \) koppeln direkt an das elektromagnetische Feld. Um die Kopplung eines quantenmechanischen Systems an eine elektromagnetische Welle zu beschreiben, führt man das Vektorpotential \(\mathbf{A}(x,t) \) und das elektrische Potential \(\phi(x,t) \) ein.

\[
\begin{align*}
\mathbf{E} &= -\nabla \phi(x,t) - \frac{\partial}{\partial t} \mathbf{A}(x,t) \\
\mathbf{B} &= \nabla \times \mathbf{A}(x,t)
\end{align*}
\]

\[
\begin{align*}
[\mathbf{E}] &= \frac{\mathbf{V}}{m} \\
[\phi] &= V \\
[\mathbf{B}] &= \frac{\mathbf{C} \cdot V s}{m} = \frac{V m \cdot s^2}{m} = \frac{\mathbf{J}}{m}
\end{align*}
\]

Die Dimension des Linearimpulses ist: \([\mathbf{P}] = \frac{k_B \cdot m}{s} = \frac{\mathbf{J}}{m} = [\mathbf{e} \mathbf{A}] \)

Man erhält für ein Teilchen der Masse \(m \) und der Ladung \(q = -e \) in einem elektromagnetischen Feld:

\[
\hat{\mathcal{H}} = \frac{\hat{\mathcal{H}}_0}{2m} \left(\hat{\mathbf{p}} - e \mathbf{A} \right)^2 + \sum V(x) + e \phi(x,t) \\
\text{Hamilton-Operator}
\]

Für elektromagnetische Wellen (im Vakuum) kann man \(\phi(x,t) = 0 \) setzen.

\[
\begin{align*}
\hat{\mathcal{H}} &= \frac{1}{2m} \left(\hat{\mathbf{p}} - e \mathbf{A} \right)^2 + V(x) \\
\text{Nun ist } \hat{\mathbf{p}} &= \frac{\hbar}{i} \nabla \\
\hat{\mathcal{H}} &= \frac{1}{2m} \left(\frac{\hbar^2}{i} \nabla - e \mathbf{A} \right)^2 + V(x) = -\frac{\hbar^2}{2m} \nabla^2 + V(x) - e^2 \frac{e}{2m} \mathbf{A} \cdot \mathbf{A} - \frac{e^2}{2m} |\mathbf{A}|^2
\end{align*}
\]

\[
\begin{align*}
\hat{\mathcal{H}} &= -\frac{\hbar^2}{2m} \nabla^2 + V(x) + \frac{i \hbar e}{2m} \left\{ \nabla A + A \nabla \right\} + \frac{e^2}{2m} |\mathbf{A}|^2 \\
\hat{\mathcal{H}} &= \hat{\mathcal{H}}_0 + \hat{\mathcal{H}}'
\end{align*}
\]

\(\hat{\mathcal{H}}_0 \) ist der Operator für das quantenmechanische System.

\(\hat{\mathcal{H}}' \) ist der Operator für die Kopplung an das EM-Feld.

\[
[\nabla \mathbf{A} + \mathbf{A} \nabla] \Psi(x) = (\nabla \cdot \mathbf{A}) \Psi(x) + \mathbf{A} \cdot \nabla \Psi(x) + \mathbf{A} \times \nabla \times \Psi(x)
\]

Da in der Coulomb-Gleichung \((\nabla \cdot \mathbf{A}) = 0 \) ist, hat man:

\[
\nabla \cdot \mathbf{A} = \frac{\mathbf{J}}{\mathbf{C}}
\]

Für nicht zu starke Felder gilt: \(e^2 \left| \mathbf{A} \right|^2 \) ist vernachlässigbar.

-1-
\[\vec{J} = \vec{J}_0 + \frac{i e \hbar}{m} \, \vec{A} \cdot \nabla \]

Die Dimension von \([\vec{J}] = \frac{C \cdot J \cdot s}{m^3} \) ist \(\frac{A \cdot V \cdot s}{N \cdot m^3} = \frac{A \cdot V \cdot s}{J} \) = \(J \)

Der Operator \(\vec{J} \) hat also die korrekte Dimension.

Wir betrachten eine ebene elektromagnetische Welle:

\[\vec{E}(\vec{r}, t) = \vec{E}_o \exp \left(i \omega t - i k \cdot \vec{r} \right) \]

Konkret betrachten wir eine Welle in \(z \)-Richtung: \(\vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \)

\[\vec{E}(\vec{r}, t) = \vec{E}_0 \exp \left(i \omega t \right) \exp \left(-i k \cdot z \right) \]

Weil die Welle rein transversal ist, hat man:

\[\vec{E}_0 = \begin{pmatrix} \vec{E}_{ox} \\ \vec{E}_{oy} \\ 0 \end{pmatrix} \]

Man weiß nun folgende Matrixelemente zwischen den stationären Zuständen \(|i\rangle, |f\rangle \) berechnen:

\[\overline{M} = \langle f | \frac{i e \hbar}{m} \, \vec{A} \cdot \nabla | i \rangle \]

\[\overline{M}_x = \frac{i e \hbar}{m} \, \vec{A}_{ox} \cdot \langle f | e^{-i k z} \frac{\partial}{\partial x} | i \rangle \]

\[\overline{M}_y = \frac{i e \hbar}{m} \, \vec{A}_{oy} \cdot \langle f | e^{-i k z} \frac{\partial}{\partial y} | i \rangle \]

Jetzt entwickelt man den Term \(e^{-i k z} = 1 - i k z + \frac{k^2 \cdot z^2}{2!} \)

Das quantenmechanische System, welches an das Strobungsfeld gekoppelt ist, sei bei \(z = 0 \) und habe die "Ausdehnung" \(a \).

\(a \) ist etwa die Ausdehnung der Wellenfunktion, also \(a \ll \frac{1}{nm} \) bei Atomen bzw. Molekülen

\[k \cdot a = \frac{2 \pi}{\lambda} \cdot a = \frac{2 \pi}{2 \pi} \cdot a = \frac{a}{2 \pi} \]
Für Infrarotschwingung gilt: \(\lambda > 1 \mu m \Rightarrow \frac{2 \pi}{\lambda} \ll 2 \pi \cdot 1 \mu m = 2 \pi \cdot 1000 \)

Deshalb ist \(k \cdot z \) immer sehr klein gegen 1.

In der Dipolannahme setzt man: \(e^{-ikz} = \mathbb{1} \) Dipolüberlegung.

\[
M_{x} = \frac{ie}{m} e^{i \omega t} \langle f | \frac{\partial}{\partial x} | i \rangle \\
M_{y} = \frac{ie}{m} e^{i \omega t} \langle f | \frac{\partial}{\partial y} | i \rangle
\]

\(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \) nennt man Dipol-Gedächtnis-Operatoren.

Folgende Beziehung wird weiter unten bewiesen:

\[
\langle f | \frac{\partial}{\partial x} | i \rangle = -\frac{m}{\hbar^2} (E_f - E_i) \langle f | x | i \rangle \\
\langle f | \frac{\partial}{\partial y} | i \rangle = -\frac{m}{\hbar^2} (E_f - E_i) \langle f | y | i \rangle
\]

Dipol-Gedächtnis-Operatoren

Hieraus ergibt sich:

\[
\frac{\partial}{\partial x} = \sum \frac{m}{\hbar^2} (E_f - E_i) \langle f | x | i \rangle
\]

\[
\frac{\partial}{\partial y} = \sum \frac{m}{\hbar^2} (E_f - E_i) \langle f | y | i \rangle
\]

Diese Beziehung wird oft benutzt, um die Matrixelemente zu berechnen.

Eine Dimensionsbetrachtung zeigt:

\[
[\frac{\partial}{\partial x}] = \frac{A}{m} \sum \frac{m}{\hbar^2} (E_f - E_i) \langle f | x | i \rangle
\]

Die Übergangsrate \(\frac{dW_{if}}{dt} \) ist proportional zum Betragssquadrat der Matrixelemente.

\[
\frac{dW_{if}}{dt} \propto \frac{m^2}{\hbar^2} (E_f - E_i)^2 \left\{ \langle f | x | i \rangle^2 + \langle f | y | i \rangle^2 \right\}
\]

\(\Delta E = (E_f - E_i) \)

Die absorbierter Leistung folgt dann: \(\frac{dp}{dt} \propto \Delta E \Delta E^2 = \Delta E^3 \)

Dies ist charakteristisch für elektrische Dipolstrahlung.

Für kleine Energieunterschiede \(\Delta E \) hat das eine sehr kleine Kopplung zu dem elektromagnetischen Feld zur Folge.
Beweis für die Beziehungen:
\[\langle \phi| \partial_x |i\rangle = -\frac{m}{\hbar^2} (E_f - E_z) \langle \phi| y |i\rangle \]
\[\langle \phi| \partial_y |i\rangle = -\frac{m}{\hbar^2} (E_f - E_z) \langle \phi| y |i\rangle \]
Es genügt, eine der beiden Beziehungen zu beweisen.
Wir betrachten eine 1-d Schrödingers Gleichung bezüglich x. Über die anderen beiden Koordinaten kann jeweils integriert werden.
Wir behandeln in der Ortdarstellung und Wellenfunktionen:

\[|i\rangle = \psi_i(x) \]
\[\langle i| = \psi_i^*(x) \]
\[|\phi\rangle = \psi_\phi(x) \]
\[\langle \phi| = \psi_\phi^*(x) \]

Der Hamilton-Operator \(\hat{H}_0 \) ist hermitisch:
\[\frac{d^2}{dx^2} \psi_\phi^*(x) + \frac{2m}{\hbar^2} \left[E_f - V(x) \right] \psi_\phi^*(x) = 0 \]
\[\frac{d^2}{dx^2} \psi_i(x) + \frac{2m}{\hbar^2} \left[E_f - V(x) \right] \psi_i(x) = 0 \]

\[\times \psi_\phi^*(x) \]

\[\times \psi_i(x) \]

Gleichungen subtrahieren.

\[- \int_{-\infty}^{+\infty} \left[\psi_i(x) \frac{d^2}{dx^2} \psi_\phi^*(x) - \psi_\phi^*(x) \frac{d^2}{dx^2} \psi_i(x) \right] dx = \frac{2m}{\hbar^2} \int_{-\infty}^{+\infty} \left[E_f - E_z \right] \psi_\phi^*(x) \psi_i(x) dx \]

Die linke Seite kann partiell integriert werden.

\[\int_{-\infty}^{+\infty} \psi_i(x) \frac{d}{dx} \left(\psi_\phi^*(x) \right) dx = \int_{-\infty}^{+\infty} \psi_\phi^*(x) \frac{d}{dx} \psi_i(x) dx \]

\[= 0 \]

\[- \int_{-\infty}^{+\infty} \psi_i(x) \frac{d}{dx} \psi_\phi^*(x) dx = -\int_{-\infty}^{+\infty} \psi_\phi^*(x) \frac{d}{dx} \psi_i(x) dx \]

\[= 0 \]

\[\int_{-\infty}^{+\infty} \psi_i(x) \frac{d}{dx} \psi_\phi^*(x) dx = \int_{-\infty}^{+\infty} \psi_\phi^*(x) \frac{d}{dx} \psi_i(x) dx \]

\[= 0 \]
\[
\frac{\partial^2}{\partial x^2} \psi_i^*(x) = -\int_{-\infty}^{\infty} \psi_j(x_1) \frac{\partial^2}{\partial x_1^2} \psi_i^*(x_1) \, dx_1 - \int_{-\infty}^{\infty} \frac{\partial}{\partial x} \psi_j(x_1) \frac{\partial}{\partial x} \psi_i^*(x_1) \, dx_1
\]

analog:

\[
\int_{-\infty}^{\infty} \frac{\partial}{\partial x} \psi_i^*(x) \, dx = -\int_{-\infty}^{\infty} \frac{\partial}{\partial x} \psi_j(x_1) \psi_i^*(x_1) \, dx_1 - \int_{-\infty}^{\infty} \frac{\partial}{\partial x} \psi_i^*(x_1) \psi_i'(x_1) \, dx_1
\]

Kombiniert man die beiden Ausdrücke, so hat man:

\[
\int_{-\infty}^{\infty} \psi_i^*(x) \frac{\partial^2}{\partial x^2} \psi_i^*(x) = -\int_{-\infty}^{\infty} \psi_i^*(x) \psi_i''(x) \, dx = \int_{-\infty}^{\infty} \psi_i^*(x) \psi_i'(x) \, dx
\]

\[
-\int_{-\infty}^{\infty} \psi_i'(x) \, dx = 2m \left(E_f - E_i \right) \int_{-\infty}^{\infty} \psi_i^*(x) \psi_i'(x) \, dx
\]

Somit:

\[
\int_{-\infty}^{\infty} \frac{\partial}{\partial x} \psi_i^*(x) \, dx = -\frac{2m}{\hbar^2} \left(E_f - E_i \right) \int_{-\infty}^{\infty} \psi_i^*(x) \psi_i'(x) \, dx
\]

\[
\langle f \mid \frac{\partial}{\partial x} \mid i \rangle = -\frac{m}{\hbar^2} \left(E_f - E_i \right) \langle f \mid x \mid i \rangle \quad \text{q.e.d.}
\]

Bei Atomen & Molekülen ist die Berechnung von \(\langle f \mid x \mid i \rangle \) meist am einfachsten, weil die Wellenfunktionen räumlich stark begrenzt sind und sich Matrixelemente der Form \(\int \psi_i^*(x) \psi_i'(x) \, dx \) gut berechnen lassen.

Bei Berechnungen im Festkörper mit gitter-periodische Wellenfunktionen ist die Form \(\langle f \mid \frac{\partial}{\partial x} \mid i \rangle \) sehr nützlich.